Busca aquí lo que necesites:

Búsqueda personalizada

Es tiempo de dar un nuevo paso adelante


Estimados amigos de este blog dedicado a la Química, aunque de vez en cuando incorpora otros temas relacionados con la Biología y las Ciencias en general:

Seguramente conocían otro de nuestros blogs que trataba temas de Física, Matemáticas y cosas así. Siempre los espacios que dedicamos a estos temas fueron los más visitados, y hablamos de cientos de miles de páginas vistas de cada uno.

Tuvimos una reunión de directorio y decidimos ir poco a poco unificando estos blogs. Para ello convertimos el blog antes llamado "Conceptos de Física" en uno muy modernizado y adaptado a la internet 3 que tomó el nombre de "Complejo Cultural Galatro". Allí reside ya todo lo que antes era el de Física y, poco a poco, irá incorporando también temas de Química, Biología, Estadística, Técnicas de Estudio, etc. para cumplir mejor las finalidad que ya hace unos cuantos años establecimos.

Así que, amigos, no dejen de visitar con frecuencia ese blog:
http://complejoculturalgalatro.blogspot.com/
para complementar éste de "Conceptos de Química" que bien conocen.

Cualquier comentario, como es habitual, lo recibiremos en los comentarios del blog y en el email danielgalatro@gmail.com .

Un saludo afectuoso y siempre a sus órdenes,
Prof. Daniel Aníbal Galatro y equipo de colaboradores.
Esquel - Argentina - Octubre 2013
---


Leer más...

El queso y el calor


Antes de ser cocinado, el queso que se utiliza para fundir contiene moléculas proteicas de cadena larga, es decir, compuestas por una gran cantidad de átomos. Estas moléculas suelen estar ovilladas en una masa grasa. Cuando el queso se calienta, las grasas y las proteínas se mezclan formando un grupo compacto de fibras que resulta fácil quebrar. Por ejemplo, cuando alguien introduce un tenedor en el queso fundido recién salido del horno, el cubierto actúa como un peine que convierte las cadenas en estrías. En esencia, sería algo parecido a extraer un hilo de un ovillo de lana.

Este proceso se puede reproducir en otros muchos materiales que contienen compuestos de cadena larga, por ejemplo los que proceden de la química del carbono bien por vía natural o por síntesis. Es el caso de los polímeros utilizados, por ejemplo, en la confección de las bolsas de plástico. Si usted hace la prueba y calienta una de estas bolsas, se dará cuenta de que su aspecto es muy similar al del queso fundido: también es elástico y puede descomponerse en hilos pegajosos.

Es más, algunos expertos proponen que la longitud que estas hebras adquieren antes de partirse puede servir para medir la cantidad de moléculas de proteínas que contiene el queso. Sería como ver en directo un fenómeno químico.

Fuente: Muy Interesante 02/06/1999
---


Leer más...

El sistema de transporte de las células


Por Guillermo Jaim Etcheverry | Para LA NACION

Cada una de las células que integran los organismos vivos complejos cumple funciones que suponen un alto grado de coordinación. Esas células no son contenedores de sustancias químicas distribuidas de manera caótica en una suerte de caldo informe sino que, en su interior, es posible identificar múltiples espacios delimitados por membranas fluidas, como la delgada capa grasa que envuelve una pompa de jabón.

El transporte entre esos diversos compartimentos está a cargo de vesículas: algunas se desplazan en el interior de las células, otras llevan distintas moléculas como hormonas o transmisores nerviosos hacia el exterior o permiten incorporar sustancias desde el entorno que rodea a las células.

¿Cómo se realiza este movimiento de manera específica, es decir, hacia el sitio apropiado en el momento oportuno? ¿Cómo "saben" las vesículas cuál es su destino, dónde y cuándo liberar su contenido?

Los trabajos de los científicos que acaban de recibir el Premio Nobel de Fisiología o Medicina 2013 han contribuido de manera decisiva a nuestra comprensión de los complejos mecanismos que regulan el tráfico de las vesículas intracelulares. Como señaló la Asamblea del Instituto Karolinska de Suecia que concede el premio, este proceso constituye "un importante sistema de transporte en nuestras células".

En síntesis, Randy Schekman descubrió un conjunto de genes que resultan imprescindibles para el normal tráfico de las vesículas; James Rothman identificó la maquinaria proteica que permite que ellas reconozcan y se fusionen con el sitio al que están destinadas para liberar allí su carga, y Thomas Südhof describió los mecanismos mediante los que las señales indican a las vesículas cuándo liberar su contenido de manera precisa. Las alteraciones de estos complejos procesos pueden producir trastornos neurológicos, endocrinos o inmunológicos.

En la década del 70, Schekman se interesó por conocer el modo en que las células organizan su sistema de transporte y decidió estudiar las bases genéticas de este mecanismo, para lo que eligió la levadura como modelo experimental. Pensaba que se trataba de un mecanismo básico que debería haberse conservado durante la evolución, por lo que sus resultados arrojarían luz sobre lo que sucede en las células de los mamíferos. Logró identificar levaduras con un mecanismo de transporte defectuoso que se manifestaba en una congestión del tráfico intracelular de vesículas. Estas se agrupaban en ciertas partes de la célula respondiendo a una causa genética. Identificó varios grupos de genes mutados que controlan las diferentes etapas del sistema de transporte celular.

A su vez, James Rothman -quien nació en los EE.UU. en 1947 y trabajó en prestigiosas instituciones de ese país hasta llegar en 2008 a la Universidad de Yale- estudió también el transporte de vesículas dentro de las células de mamíferos en las décadas de 1980 y 1990. Descubrió un complejo de proteínas que permiten que las vesículas reconozcan, se asocien y, finalmente, se fusionen con las membranas hacia las que están dirigidas. El proceso de reconocimiento está a cargo de varias proteínas presentes en el exterior de las vesículas y de las membranas que encajan entre sí de manera perfecta. El hecho de que existan muchas de esas proteínas que sólo se reconocen entre sí de modo altamente específico, garantiza que la carga se dirija hacia su destino preciso. Éste puede ser un compartimento dentro de la célula o su cubierta externa en el caso de que el contenido de la vesícula esté destinado a la exportación.

Tal como había supuesto Schekman -nacido en 1948 en los EE.UU. y, desde 1976, profesor en la Universidad de California en Berkeley-, algunos de los genes que en su momento identificó en la levadura son similares a los que Rothman descubrió luego en mamíferos, lo que confirmó que el sistema de transporte dentro de las células reconoce un origen evolutivo muy antiguo.

¿Mediante qué mecanismo la señal desencadena la fusión de las vesículas cuando llegan a destino? Aquí entra en escena Thomas Südhof, interesado en descubrir el modo en que las células nerviosas se comunican entre sí. Las señales que permiten hacerlo, los neurotransmisores, son liberados desde el interior de vesículas que se fusionan con la membrana externa de las células nerviosas mediante el mecanismo descripto por Rothman y Schekman.

Pero estas vesículas, cuya existencia fue descripta en la década del 50 por el científico argentino Eduardo De Robertis, sólo liberan su contenido cuando las células nerviosas reciben la señal apropiada de sus vecinas.

Si bien se sabía que los iones de calcio eran esenciales para este proceso, Südhof investigó la presencia de proteínas sensibles al calcio en estas células. Este científico -nacido en Alemania en 1955 y, desde 2008, profesor de la Universidad de Stanford, en EE.UU.- logró identificar la compleja maquinaria proteica que responde a la entrada de los iones calcio haciendo que las proteínas vecinas se fijen velozmente a las membranas de las vesículas produciendo su fusión y la liberación de su contenido.

Entre otras muchas distinciones, los tres galardonados habían recibido ya -Rothman y Schekman, en 2002, y Südhof este mismo año- el Premio Lasker, considerado la antesala del Nobel.

Leer más...

Experimentos: ácidos, bases, indicadores químicos

Experimentos: combustión del azúcar, catalizadores

Experimentos: Encendiendo fuego con una patata (papa)